

Salutation-Lite Code Programmers Guide

Final Beta Release (1.0.0)

November 8, 1999

Salutation-Lite Programmers Guide

Beta Release 1 -1 - Created on 7/9/2000 4:18 PM

Copyright
© Copyright The Salutation Consortium Inc. 1999-2000. © Copyright XtraWorX, LLC. 1999-2000. All
rights reserved. Permission to use, or reproduce this document for any purpose without fee is granted.
However, both copyright notice and this permission notice should appear in the reproduced materials. The
Salutation Consortium retains all intellectual property rights in this Specification.

Limitation of Liability

The XtraWorX nor the Consortium shall not make any warranty or representation, neither express nor
implied, with respect to this document, its quality or accuracy and it specifically disclaims the warranties of
merchantability and fitness for a particular purpose.

No representation of third party rights

The Salutation Consortium and XtraWroX, LLC make no representation or warranty whatsoever with
regard to the Consortium member or third party ownership, licensing or infringement/non-infringement of
intellectual property rights. Each user of this Specification, whether or not a Consortium member, should
seek the independent advice of legal counsel with regard to any possible violation of third party rights.

Trademarks

All product names are trademarks of the respective product owners and/or companies.

Salutation-Lite Programmers Guide

Beta Release 1 -2 - Created on 7/9/2000 4:18 PM

Table of Contents

Copyright... 1
Table of Contents ... 2
References ... 3
Development Environment ... 3
Salutation-Lite.. 4

Reducing the footprint .. 4
Function Description .. 5

Protocol.. 5
Transport .. 5
Exchange SLM ID .. 5
Client ... 5
Server... 5

Design Specification... 6
Design Details .. 7

Capability Registry Structure .. 7
Pre-Configured Device Selection .. 8
Server Compare Functions .. 8
Salutation-Lite Client.. 9
Salutation-Lite Client APIs ... 9
Client Application... 9
Other Design Considerations... 9

Appendix A.. 11
Salutation Lite Protocol on IrDA .. 11
Appendix B.. 13
Salutation-Lite Function Support Table... 13

Salutation-Lite Programmers Guide

Beta Release 1 -3 - Created on 7/9/2000 4:18 PM

References
• Salutation Architecture Specification Part 1. (http://www.salutation.org/ordrspec.htm)
• Salutation Architecture Specification Part 2. (http://www.salutation.org/ordrspec.htm)
• Salutation Architecture Specification Part 4 (Proposed),
• Salutation Architecture Change Request: OpSys Functional Unit, November 9, 1999
• Salutation Architecture Change Request: Display Functional Unit, April 5, 1999
• Salutation Architecture Change Request: Determine the Value of a Subset of the Attributes of a

Registered Functional unit, April 5, 1999
• Salutation Architecture Change Request: Response type Specification for Query Capabilities

Call/Reply, November 9, 1999
• Salutation Service Discovery Protocol on IrDA: Application Note

Development Environment
The Salutation Lite Sample Code was developed using the following compilers:

Salutation-Lite Client Microsoft Visual C++, Version 6
Salutation-Lite server on Windows CE Microsoft Visual C++, Version 6, plus Windows CE

Extensions
Salutation-Lite Server on Java Java JVM 2.1

Salutation-Lite Programmers Guide

Beta Release 1 -4 - Created on 7/9/2000 4:18 PM

Salutation-Lite
Salutation-Lite is a footprint-reduced implementation of the Salutation Architecture. It is intended for the
information appliance market, where storage space is limited, communication bandwidth may be low and
power consumption is at a premium. Targets appliances are hand-held and palm-sized computers, portable
phones, pagers, home appliances and local information servers.

Salutation-Lite may be used as a reference model for beginning a Salutation implementation. Salutation-
Lite provides a reference implementation for the Salutation service discovery function. Salutation’s
availability check and session management may be added to this simple design.

Salutation-Lite demonstrates two new Functional Units; [Display] and [Operating Environment].

Salutation-Lite demonstrates two functions designed for limited bandwidth environments; Reply Flavor and
Don'tCare Compare algorithm.

Salutation-Lite is implemented on IrDA protocol. The implementation has been easily ported to other
protocol stacks.

Reducing the footprint
 The Salutation Architecture supports three general functions.
• Service Discovery: The ability to advertise capabilities and find services which provide needed

capabilities
• Availability Check: The ability to determine if a desired service is available
• Session Management: The ability to open, control, and maintain a session with a desired services

Salutation-Lite implements the service discovery function, enabling a device, application, or service to
define its capabilities in a standard way, and allowing other devices, applications and services to interrogate
these local services definitions. The Salutation functions of availability check and session management,
which may not be necessary in all applications, are not supported in the Salutation-Lite implementation.
These functions may be easily added to the Salutation-Lite design as a user option.

The Salutation Architecture specifies Remote Procedure Calls (RPC) for sending Salutation commands and
tracking responses. Salutation-Lite does not use RPC. Instead, a BER encoded wrapper is placed around the
Salutation generated content to specify the type of Salutation command and match responses with requests.

Salutation Architecture specifies 11 Application Program Interfaces (API) to access and control the
functions of the Salutation Manager. Salutation-Lite supports only 4 of these APIs; slmRegisterCapability,
slmUnregisterCapability, slmSearchCapability and slmQueryCapability1. Since Salutation-Lite does not
support availability check and session management, supporting APIs are not needed.

To further reduce the Salutation-Lite implementation, it has been divided into a client Salutation-Lite
Manager and a server Salutation-Lite Manager.

Where possible, the Salutation-Lite implementation uses system resources to perform necessary functions.
For example, the WindowsCE version of Salutation-Lite uses Windows Socket interface to access the IrDA
protocol.

Error checking is kept to a minimum. For example, it is assumed that the SDR and FUDR BER encodings
have been generated correctly, and that attribute values are within architected limits.

1 A prototype for the slmOpenService API has been included in this release.

Salutation-Lite Programmers Guide

Beta Release 1 -5 - Created on 7/9/2000 4:18 PM

Function Description

Protocol
The Salutation-Lite protocol is designed and implemented on the Infrared Data Association (IrDA) stack.
To ease portability to other protocols, the high-level interfaces to the IrDA stack are used. For example,
Windows Sockets is used to access IrDA stack in Windows implementations2. The flow diagram for
Salutation-Lite on IrDA is shown in Appendix A.

Transport
Salutation-Lite is built on the IrDA protocol found in many of today's mobile information appliances. In the
WindowsCE implementation, access to the IrDA protocol is through Windows Sockets. Other protocols,
such as TCP/IP and Bluetooth are readily accessible with minimal changes to the Salutation-Lite code.

Exchange SLM ID
The Transport Manager handles the exchange of SLM IDs. The Client's Transport Manager generates an
ExchangeSLM-ID protocol command when another IrDA device is encountered. Responses are correlated
with the IrDA address of the responding device. The Salutation-Lite Client will not perform capability
checking on local services.

Client
The Salutation-Lite Client exposes the slmSearchCabability and slmQueryCapability APIs. An application
on the client can find Salutation servers (Lite or regular) using these APIs, and determine the capabilities of
the functions on these Salutation servers.

The Salutation-Lite Client generates the Query Capability protocol command.

The Salutation-Lite Client does not process the SDR content passed in the APIs or returned from the
transmission protocol. No error checking is performed.

Server
The Salutation-Lite Server processes QueryCapability protocol commands. It assumes that the information
received is in the architected format and tolerances. No error checking is performed on the SDR content of
the QueryCapability command.

Local capabilities are registered in the server via a slmRegisterCapability API call. While the Salutation
Architecture requires that Functional Unit Description Record (FUDR) passed in the API be BER encoded,
Salutation-Lite passes a structure defining the Functional Unit capabilities. The structure is flexible and
may contain the definition of any Functional Unit (FU), including the newly defined [Display] and
[OperatingEnvironment] FUs. Header files are provided which provide reference definitions for these latter
two FUs. The user may dynamically alter the content of the structure in the server-side application through
standard programming techniques, and then pass the structure through the slmRegisterCapability API to the
lite version of the Salutation Manager.

The Salutation-Lite Server parses the received service Description Record (SDR) content received from the
Salutation client via theQueryCapability protocol command, and compares it against the content of the
local capability registry structure. The parser supports the newly defined QueryCapabilities Response Type
and the Don'tCare Compare ID functions.

2 A Wintel version has been created on TCP/IP, for example. This version will be offered in open source at
a later date.

Salutation-Lite Programmers Guide

Beta Release 1 -6 - Created on 7/9/2000 4:18 PM

Design Specification
Figure 1 depicts the high-level design of Salutation-Lite.

 Figure1: High-Level design

Salutation-Lite Server
The Salutation-Lite Server is designed for the mobile information appliances. It provides a means for the
Server to describe its capabilities. It processes requests for capability information from Salutation Clients.
The Client need not be a Lite version of Salutation.

The Salutation-Lite Server consists of a Server Salutation Manager3 part and an IrDA Server Transport
Manager4 part. The IrDA Server Transport Manager interfaces the Salutation Manager with the
IrDAProtocol Stack using IR Sockets. The IrDA Server Transport Manager receives Salutation protocol
requests from the client and passes them to the Server Salutation Manager for processing. The IrDA Server
Transport Manager passes responses from the Server Salutation Manager to the IrDA Stack.

The unique Functional Unit capabilities of the Server are stored in a registry maintained by the IrDA Server
Transport Manager. The registry is a program structure populated by the Server Application and passed to
the Salutation-Lite Transport Manager via the slmRegisterCapability API. The Server Salutation Manager
uses the Salutation Architecture defined algorithms to compare the capability request received from a
Salutation Client with the capability information stored in the registry structure. The Server Salutation
Manager builds a response to the capability request based on the results of the compare, and the value of
the Reply Flavor attribute.

The Salutation-Lite Server runs in the background. With the exception of Message Boxes reporting IrDA
initialization errors, the Salutation-Lite Server does not present any user interface.

The Server Application5 is provided for testing purposes. It presents a simple Window for registering and
unregistering capabilities wit the Server Salutation Manager. Although not part of the Salutation-Lite
Client, this application is provided to demonstrate the use of the APIs. The application has a pull-down
menu providing the ability to register and unregister Display and Operating Environment Functional Units.

Salutation-Lite Client

3 Defined by the WindowsServer.cpp source code and WindowsServer.dll executable.
4 Defined by the SLMLite.cpp source code and SLMLite.dll executable.
5 Defined by the WindowsServerApp.cpp source code and WindowsServerApp.exe executable.

Client Application

Client Salutation
Manager

IrDA Client
Transport Manager

IrDA Protocol
Stack

Server Application

Server Salutation
Manager

IrDA Server
Transport Manager

IrDA Protocol
Stack

Salutation-Lite API

IrDA Protocol

WindowsServerApp.exe

WindowsServerApp . exe

ClientApp.exe

SLMLite.dll
SLM_Lite_Client.dll {

Salutation-Lite
Client

Salutation-Lite
Server

Capability
Registry

Salutation-Lite Programmers Guide

Beta Release 1 -7 - Created on 7/9/2000 4:18 PM

The Salutation-Lite Client is designed to support applications wishing to discover functionality on the
server. The Salutation-Lite Client provides a means for an application to locale mobile information
appliance of a specific type and determines the detailed capabilities of that appliance. The appliance must
be Salutation enabled, but need not be a Lite version.

The Salutation-Lite Client consists of a Client Salutation Manager part and an IrDA Client Transport
Manager part6. The IrDA Client Transport Manager interfaces the Client Salutation Manager with the IrDA
Stack. The IrDA Client Transport Manager passes QueryCapability Salutation protocol commands to the
IrDA Stack. The IrDA Client Transport Manager passes responses received from the server over the IrDA
protocol to the Client Salutation Manager.

The Client Salutation Manager assumes a peer-to-peer connection with the server. Therefore, there is no
attempt to correlate the server’s SLM ID with that requested by the Client.

The Client's Salutation Manager exposes two APIs. slmSearchCapability allows an application to locate
appliances having specific capabilities. slmQueryCapability allows an application to interrogate the
capabilities of a specific appliance.

The Client Application7 is provided for testing purposes. It presents a simple Client Window for reporting
the results of a Query Capabilities command. Although not part of the Salutation-Lite Client, this
application is provided to demonstrate the use of the APIs. The Client Application is designed to locate an
appliance, interrogate its capabilities and display the results of the interrogation. The application has a pull-
down menu providing the ability to register and search for and query the server for capabilities8.

Design Details

Capability Registry Structure
The Attribute.h file defines and initializes the structure used to register the capabilities of the Salutation-
Lite Server. The structure is defined as follows:
struct AttributeHeader
{
 long Name;
 int Compare;
 int Length;
 int Used;
};
union value
 {
 char strValue[64];
 int intValue[64];

 };
struct Attribute
{
 AttributeHeader Header;
 value Value;
};

6 Both the Clinet Salutaiton Mangaer and the IrDA Client Transport Manager are defined in the
SLM_Lite_Client.cpp source and SLM_Lite_Client.dll executable.
7 Defined by the ClientApp.cpp source code and ClientApp.exe executable.
8 A prototype for opening a service session with one of the fund capabilities is also provided.

Salutation-Lite Programmers Guide

Beta Release 1 -8 - Created on 7/9/2000 4:18 PM

The registry is an array of Attribute structures. It may be depicted as in Table 1. Each row represents one
instance of the structure.

 Name Compare Length Used Value
FU 1
Attribute 1..
Attribute 2..
Attribute..
FU 2
Attribute 1..
Attribute 2..
Attribute..
Table 1: Capability Registry Structure

The first row contains information about the Functional Unit.
• The Name field contains the Architected ID of the FU.
• The Length filed contains the number of Attribute fields (rows) to follow.
• The Value field contains the Functional Unit Handle
• The other fields are not used.
Subsequent rows, equal to the number contained in the FU row's Length field, define attributes of the FU.
• The Name field contains the Architected ID of the Attribute.
• The Compare field contains the Architected ID for the compare function to be performed on the

attribute.
• The Length filed contains the number of bytes in the Value field of this row.
• The Used field is used by the compare process and is initially set to 0.
• The Value field contains the value of the attribute.
Multiple FUs may be defined in one registry by continuing the definition process in the array. The total
number of structures in the array is defined in an integer called "regFUCount".

It is this structure that is passed to the Server Salutation manager via the slmRegisterCapability API.

Pre-Configured Device Selection
Although the current open source implementation supports only the Wintel platform, the Attribute.h file
also provides for automatic configuration for several existing handheld devices. Conditional logic is
provided in this header file to initialize the Capability Registry Structure for several information appliances,
including a 'generic' Windows98 platform. To select a pre-defined configuration, place one of the following
lines of code at the top of the WindowsServer.cpp file.

#define _WIN32_WINDOWS /* Windows98 configuration */
#define _PHENOM /* LGElectronics Phenom */
#define _SHARP /* Sharp Mobilon HC-4500 */
#define _TRIPAD /* Sharp Mobilon Tripad */
#define _EVEREX /* Everex PK10 */

Server Compare Functions
The Salutation-Lite Server is responsible for comparing the capabilities requested by the client with the
capabilities registered in the server. The comparison code parses the SDR received from the IrDA
Communications Stack through the Transport Manager. The parser assumes that the SDR has been encoded
correctly by the client and the transport layer corrects any transmission errors. Therefore, the parser does
not perform any error checking.

The parser locates the First Functional Unit Description Record (FUDR) and determines its type (name). It
then checks the Registry to determine if this FU type is registered. If it is not, this FUDR is skipped. If it is,
the capability values described in the FUDR are compared with the capability values stored in the Registry.

Salutation-Lite Programmers Guide

Beta Release 1 -9 - Created on 7/9/2000 4:18 PM

In the later case, the parser determines the attribute type, its compare value and the attribute value. It then
searches the Registry for a like attribute in the Same FU description. If found, the parser compares the
parsed attribute value with the registered attribute value based on the compare algorithm specified. For
details of this compare function, see Section 4.1.3 of the Part 1 Salutation Architecture Specification. Of
special note in the Salutation-Lite implementation:
• The following comparison algorithms are supported

• INTEQUALTO
• STREQUALTO
• BOOLEQUALTO
• SETINTDOESCONTAIN
• INTGREATERTHANOREQUALTO

• The parser recognizes the ReplyFlavor attribute (70). If present in the SDR received from the Client,
the response SDR is constructed according to the attribute value.
• 1 = MAXIMUM -- all registered attributes are reported in the reply, even though they were not

requested in the SDR sent from the Client
• 2 = NOMINAL -- only attributes requested in the SDR sent by the Client are reported in the reply
• 3 = MINIMUM -- No attributes are reported in the reply.
The default is MAXIMUM.

• The parser recognizes the Don'tCare compare value. The parser ignores the attribute value of the
requested attribute and reports the attribute value stored in the Registry.

Based on the results of the compare, the Salutation-Lite Manager builds a Response SDR and passes it
through the Transport Manager to the IrDA Stack for return to the Client.

Salutation-Lite Client
The Salutation-Lite Client is an application to send slmSearcCapability and slmQueryCapability API calls
to the Client Salutation Manager. For the sample code, the SDR is hard-coded in the
WindowsClientApp.cpp file. The pull-down menu provides

Salutation-Lite Client APIs
Five Salutation APIs are supported in the Salutation-Lite Client.
• slmSearchCapability -- Determine the SLM-ID of other Salutation Enabled product
• slmQueryCapability -- Determine the capabilities of a Salutation Enabled product
• slmOpenService – Prototype of API which opens a service session with a discovered Functional Unit.
• slmTransmitData – Note supported in this release.
• slmCloseSession – Not supported in this release.

Salutation-Lite Server APIs

Three Salutation APIs are supported in the Salutation-Lite Server.
• slmRegisterCapability – register the attributes of a Functional Unit
• slmUnregisterCapability – remove the registration of a Functional Unit.
• slmTransmitData – not supported in this release.

Client Salutation Manager
The Client Application sends a QueryCapabilities command to a Server, searching for [Display] and
[Operating Environment] FUs. The Client then displays the attribute values returned.

Other Design Considerations
• Server:

Salutation-Lite Programmers Guide

Beta Release 1 -10 - Created on 7/9/2000 4:18 PM

• Only one Attribute of a given type may be specified within a registered FU
• Registration storage limited to local FUs only

• Client:
• Can only discover/communicate with one server at a time (assumes underlying transmission

protocol limits communication to point-to-point)

Salutation-Lite Programmers Guide

Beta Release 1 -11 - Created on 7/9/2000 4:18 PM

Appendix A

Salutation Lite Protocol on IrDA

Part 1: Setup IrDA Link and locate Salutation enabled portable device

Discovery
Application

SLM-Lite
Client (PC)

IrDA
Protocol

SLM-Lite
Server (PDA)

PDA
Applications

Initialize socket()

socket handle

Initializesocket()

socket handle

bind (name)

OK/error

OK/error

OK/error

listen()

accept()

Getsockopt
(IRLMP_

ENUMDEVICES

Discovery Request

device list Responses(devices)

connect(name) GetValueByClass(name)

LSAP-SEL

TTP-DATA/CREDITS

ResponseOK/error
new socket

handle

Setsockopt
SLMID

Getsockopt
(SLMID?) Discovery Request

SLMID Responses(SLMID)

Salutation-Lite Programmers Guide

Beta Release 1 -12 - Created on 7/9/2000 4:18 PM

Part 2: SLM-Lite Search and Query Capability Calls, data transmission.

 Client
Application

SLM-Lite
 Client

IrDA
Protocol

SLM-Lite
 Server

Server
Applications

send(QUERY_
CAPABILITIES) TTP-DATA/CREDITS

recv(QUERY_
CAPABILITIES)

TTP-DATA/CREDITS
send(QUERY_

RESPONSE)
recv(QUERY_
RESPONSE)

slmSearch
Capabilities()

SLM_IDs

Compare
Function

send(QUERY_
CAPABILITIES) TTP-DATA/CREDITS

recv(QUERY_
CAPABILITIES)

TTP-DATA/CREDITS
send(QUERY_

RESPONSE) recv(QUERY_
RESPONSE)

slmQuery
Capabilities()

Service
Description

Record

Compare
Function

TTP-DATA/CREDITS send()/recv() send()/recv()

closesocket() recv() len=0

closesocket()

TTP-DISC

Response

opensocket() recv() len=0 TTP-DISC

opensocket() Response

slmUnregisterCpability

slmRegisterCapability

Salutation-Lite Programmers Guide

Beta Release 1 -13 - Created on 7/9/2000 4:18 PM

Appendix B

Salutation-Lite Function Support Table

The following table outlines the function support in the current releases

Platform Windows WindowsCE Java
OpenSoruce Release Release 1.0.0 Beta 2 Beta 2
slmSearchCapabilities API Yes No No
slmQueryCapabilities API Yes No No
slmOpenService API Prototyped No No
slmTransmitData API No No No
slmCloseService API No No No
ExchangeSLMID Protocol Command Yes Yes Yes
QueryCapabilities Protocol Command Yes Yes Yes
OpenService Protocol Command Prototyped No No
TransmitData Protocol Command No No No
CloseService Protocol Command No No No
Display FU Yes Yes Yes
OpSys FU Yes Yes Yes
Reply Flavor Yes Yes Yes
Don'tCare Compare ID Value Yes Yes Yes
BER Command Header Yes Yes Yes

