DATE

Bluetooth wHITE mPER | 01 July 99

N.B. DOCUMENT NQ
1.C.118/1.0

RESPONSIBLE
Brent Miller

E-MAIL ADDRESS
bamiller@us.ibm.com

STATUS

Mapping Salutation Architecture APlIs
to Bluetooth Service Discovery Layer

Version 1.0

Bluetooth provides a Service Discovery layer
and defines a series of primitives to access

the functions of the Service Discovery layer.
This paper describes a mapping between these
primitives and the APIs and functions in the
Salutation Architecture.

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 2 of 26

Special Interest Group (SIG)

The following companies are represented in the Bluetooth Special Interest Group:
Ericsson Mobile Communications AB

IBM Corp.

Intel Corp.

Nokia Mobile Phones

Toshiba Corp.

Disclaimer and copyright notice

THIS DRAFT DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any
proprietary rights, relating to use of information in this document is disclaimed. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

This document is an intermediate draft for comment only and is subject to change without notice.

Readers should not design products based on this document.

Copyright © IBM Corp., 1999. *Third-party brands and names are the property of their respective
owners.

............... 01 July 1999 2

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer

Page 3 of 26

Revision History

Revision Date Comments

0.1 3/29/1999 First Draft

0.9 6/1/99 Response to SIG Comments
1.0 7/01/99 Final Version 1.0

Contributors
Robert Pascoe Salutation Consortium

Brent Miller IBM

............... 01 July 1999

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 4 of 26

Contents
OVEIVIBW ...ttt e e e et ettt e e e e e e e e e e e eaata e e e e e e eeaeennnnes 5
2 BlUEtoOoth SUMMANYooeeiiii e 6
2.1 Bluetooth Service Discovery ProtoColccoeuvvviiiiniiiiiiieiinnnns 6
2.1.1 Protocol Data Unit TYPES.....coeeiieeiiiieiiiiiiiiee e 7
2.2 Bluetooth Profile Stack.........ccooeiiiiiiiiiii e 8
2.3 Bluetooth Service Primitives...........coouuiiiiiiiieiiiiiiiiicee e 8
3 Salutation Architecture SUMMary........cccccoeeeiii i 10
3.1 Service BroKer TasKScoiiiiiiiiiiiiiiiiiie e 11
3.1.1 ServiCe REQISHIY ...coieeiiiiiieiiiiee e 11
3.1.2 ServiCe DISCOVEIYccciiiieiiiiiiiiaeaeeeeeeeeiiiea e e e e eeeeaeenes 11
3.2 Salutation Manager APl Specification.............c..uveiiiiiiiiiiieninnns 12
3.2.1 Salutation Manager APl Description............ccoeeeeveeennnnns 12
3.3 Service DIiSCOVEry FIOWccooiiiiiiiiiiiiiii e 14
4 Mapping Bluetooth SDP to Salutation APIScccooviiiiiiiiiiiiii. 15
4.1 General Mapping ASSUMPLIONSuvvuiiiieeeiieeiiiiiiiee e e e e eeeeieeens 15
Salutation AP MapPing......ccoeeeuuuriiiiieee et e et eeeeeenenens 16
4.2.1 Configurationcooeuuuiiiiinieeeeeieiieee e 16
4.2.2 MaAPPING..cciiiiiiiiiaiee e 16
4.2.3 SUMMANY ..ttt e e e e e e e e eea e e eeees 19
4.3 Salutation Manager Mappingcc.uueeeeeeeeeeeeeeeiiiiiinee e eeeeeennens 19
4.3.1 Configurationcoeeuuuiiiinieee e 19
4.3.2 MaAPPING..cciiiiiiiiieae e 20
4.3.2.1 Capability Search........ccccccoeiiiiiiiiiiii. 20
4.3.2.2 Capability QUery........coovviiiiiiiieeeeeeeeenn 22
4.3.3 SOP RUIES ..oviiiiieee e 23
4.3.4 SUMMANY ..ttt e et e e e e e e eeaa e aeeees 23
5 RETEIBNCES ..ot 25
6 D INITIONS et 26

............... 01 July 1999 4

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 5 of 26

1 Overview

The Bluetooth protocol stack contains a service discovery protocol (SDP) [1] that
enables the retrieval of information that can be used to configure the stack to
support several end-user applications. SDP can further be used to locate
services that are available on devices in the vicinity of the user. Having located
available services, a user may then select to use any of them.

SDP provides direct support for the following set of service inquires:
search for services by service class;
search for services by service attributes; and
service browsing.

A service discovery profile is provided [2] that describes a generic syntax and
semantics to be used by a service discovery application to locate services in
other processes using Bluetooth SDP. The primitives are described in a generic
way as these primitives may be operating environment dependent.

The Salutation Architecture [3] provides a standard method for applications,
services and devices to describe and to advertise their capabilities to other
applications, services and devices and to find out their capabilities. The
architecture also enables applications, services and devices to search other
applications, services or devices for a particular capability, and to request and
establish interoperable sessions with them to utilise their capabilities.

This paper maps Bluetooth service discovery to the Salutation Architecture.
Specifically this paper (1) maps the Bluetooth service discovery profile to the
Salutation APIs and (2) maps the Bluetooth Service Discovery Protocol to the
Salutation Manager.

Overview 01 July 1999 5

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 6 of 26

2 Bluetooth Summary

2.1Bluetooth Service Discovery Protocol

Figure 2.1 shows the Bluetooth protocols and supporting entities.

SrvDscApp

RemSrvApp

BT_modul€ntrl i () service
. records DB
SDP © SDP fes)

Cco co
L2CAPlayer | g—pp L2CAPlayer

L

H

. AcL [At]
Baseband <> Baseband
LocDev RemDev

Figure 2.1: The Bluetooth protocol for the service discovery profile

The blocks marked SDP indicate the service discovery component. An SDP block
generates and receives Bluetooth service discovery protocol (SDP) commands
and responses from the lower layers of the Bluetooth stack.

SDP provides a means for client applications to discover the existence of
services provided by server applications as well as the attributes of those
services. The attributes of a service include the type or class of service offered
and the mechanism or protocol information needed to utilise the service.

As shown in Figure 2.1, SDP involves communication between an SDP server
located on RemDev and an SDP client located on LocDev. The server maintains
a list of service records that describe the characteristics of services associated
with the server. Each service record contains information about a single service.

Bluetooth Summary 01 July 1999 6

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 7 of 26

A client may retrieve information from a service record maintained by the SDP
server by issuing an SDP request.

All of the information about a service is maintained by an SDP within a single
service record. The service record consists entirely of a list of service
attributes. Each service attribute describes a single characteristic of a service.

SDP uses a request/response model where each transaction consists of one
request protocol data unit (PDU) and one response PDU. Generally, each type
of request PDU has a corresponding type of response PDU. However, if the
server determines that a request is improperly formatted or for any reason the
server cannot respond with the appropriate PDU type, it will respond with an
SDP_ErrorResponse PDU.

2.1.1 Protocol Data Unit Types

ServiceSearch Transaction:

The SDP client generates a SDP_ServiceSearchRequest to locate service
records that match the service search pattern given as the first parameter of
the PDU. Upon receipt of this request, the SDP server will examine its
service record data base and return an SDP_ServiceSearchResponse
containing the service record handles of service records that match the given
service search pattern.

ServiceAttribute Transaction:

The SDP client generates a SDP_ServiceAttributeRequest to retrieve
specified attribute values from a specific service record. The service record
handle of the desired service record and a list of desired attribute ids to be
retrieved from that service record is supplied as parameters.

ServiceSearchAttribute Transaction:

The SDP_ServiceSearchAttributeRequest transaction combines the
capabilities of the SDP_ServiceSearchRequest and the
SDP_ServiceAttributeRequest into a single request. As parameters, it
contains both a service search pattern and a list of attributes to be retrieved
from service records that match the service search pattern. The
SDP_ServiceSearchAttributeRequest and its response are more complex and
may require more bytes than separate SDP_ServiceSearch and
SDP_ServiceAttribute transactions. However, using
SDP_ServiceSearchAttributeRequest may reduce the total number of SDP
transactions, particularly when retrieving multiple service records.

Browsing for Services:

Normally, a client searches for services based on some desired
characteristic(s) of the services. However, there are times when it is desirable
to discover which types of services are described by an SDP server’s service

Bluetooth Summary 01 July 1999 7

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 8 of 26

records without any a priori information about the services. This process of
looking for any offered services is termed browsing. In SDP, the mechanism
for browsing for services is based on an attribute shared by all service
classes. This attribute is called the BrowseGroupList attribute. Each attribute
represents a browse group with which a service may be associated for the
purpose of browsing. When a client desires to browse an SDP server’s
services, it creates a service search pattern containing the attribute that
represents the root browse group.

Refer to Reference [1] for details about the Bluetooth service attribute definitions.
2.2 Bluetooth Profile Stack

Refering to Figure 2.1, the service discovery user application (SrvDscApp) in a
local device (LocDev) interfaces with the SDP protocol to send service inquires
and receive service inquire responses from other remote devices (RemDev). The
SDP uses the connection-oriented (CO) transport service in L2ZCAP, which in turn
uses the baseband asynchronous connectionless (ACL) links to carry ultimately
the SDP PDUs over the air.

2.3 Bluetooth Service Primitives

This section briefly describes the service primitives that the Bluetooth stack
needs to expose to the SrvDscApp to perform its task.

Table 2.1 contains a minimum set of enabling service primitives to support a
SrvDscApp. Different implementations of the Bluetooth stack shall (at a minimum)
enable the functions that these service primitives provide. For example, the
serviceSearch() service primitive permits multiple identical operations to be
handled at once. A stack implementation that requires an application to
accomplish this function by iterating through the multiple identical operations one
at a time will be considering as enabling the function of this service primitive.

service primitive function accomplished
serviceBrowse searches for services (service browsing) that belong to
(the list of browseGroup services in the devices in the list
LIST(RemDev); of RemDevs; the search may be further qualified with a
LIST(RemDevRelation); list of RemDevRelation parameters, whereby a user
LIST(browseGroup); specifies the trust and connection relation of the devices
stopRule to be searched, e.g., search only the devices that are in
) the RemDev list for which pairing has been performed,;
search continues until the stopping rule stopRule is
satisfied
serviceSearch searches whether the devices listed in the list of
RemDevs support services in the requested list of
LIST(RemDev); services; each service in the list must have a service
LIST(RemDevRelation); search path that is a superset of the searchPath; for
LIST(searchPath, each such service the values of the attributes contained

Bluetooth Summary 01 July 1999 8

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 9 of 26

attributeList); in the corresponding attributeList are also retrieved; the
stopRule search may be further qualified with a list of
) RemDevRelation parameters, whereby a user specifies
the trust and connection relation of the devices to be
searched, e.g., search only the devices that are in the
RembDeuv list for which pairing has been performed,
search continues until the stopping rule stopRule is
satisfied
enumerateRemDev searches for RemDev in the vicinity of a LocDev;
RemDev searches may optionally be filtered using the
LIST(classOfDevice); list of classOfDevice, e.g., LAN APs; search continues
stopRule until the stopping rule stopRule is satisfied
)
getRemDevName retrieves the names of devices associated with the
execution of the service primitives identified by the list of
LIST(primitiveHandle); primitiveHandIe;l search continues until the stopping
stopRule rule stopRule is satisfied
)
terminatePrimitive terminates the actions executed as a result of invoking
(the services primitive identified by the primitiveHandle;
primitiveHandle; optionally, this service primitive may return any partially
returnResults accumulated results related to the terminated service
) primitive

Table 2.1: Service primitives in support of SrvDscApp

!t is assumed that each invocation of a service primitive can be identified by a primitiveHandle

the realization of which is implementation dependent.

Bluetooth Summary

01 July 1999 9

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 10 of 26

3 Salutation Architecture Summary

The Salutation Architecture was created to solve the problems of service
discovery and utilization among a broad set of appliances and equipment and
in an environment of widespread connectivity and mobility.

The architecture provides a standard method for applications, services and
devices to describe and to advertise their capabilities to other applications,
services and devices and to find out their capabilities. The architecture also
enables applications, services and devices to search other applications, services
or devices for a particular capability, and to request and establish interoperable
sessions with them to utilize their capabilities.

Given the diverse nature of target appliances and equipment in an environment
of widespread connectivity, the architecture is processor, operating system, and
communication protocol independent, and allows for scalable implementations,

even in very low-price devices.

As shown in Figure 3-1, the Salutation Architecture defines an entity called the
Salutation Manager (SLM) that functions as a service broker for applications,
services and devices called a Networked Entity. The Salutation Manager allows
Networked Entities to discover and utilize the capabilities of other Networked
Entities.

Service Client || Client | |Service Client
SLM-API
| SLM. Salutation | SalumtionManager || SLM.
™ Manager ™ T™M ™
Protocol
Xport Transport | Transport Xport

T

A Networked Entity may be a service provider, called a Service. The Service
registers its capability with a Salutation Manager. A Networked Entity may be a
service user, called a Client. The Client discovers Services and requests to use
them through a Salutation Manager. A Networked Entity may serve as either a
Client or a Service, or both.

Figure 3-1: Model of the Salutation Manager

Salutation Architecture Summary 01 July 1999 10

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 11 of 26

The Salutation Manager provides a transport-independent interface, called the
Salutation Manager Application Program Interface (SLM-API), to Services
and Clients. The architecture defines an abstract procedural SLM-API.

The Salutation Manager communicates with other Salutation Managers to
perform its role as a service broker. The Salutation Manager-to-Salutation
Manager communications protocol is defined by the Salutation Architecture and
called the Salutation Manager Protocol. The Salutation Manager binds to a
specific transport through a Transport Manager (TM) unique to that transport
class.

3.1 Service Broker Tasks

To perform its function as service broker, the Salutation Manager provides four
basic tasks:

Service Registry

Service Discovery

Service Availability

Service Session Management

Service Registry and Service Discovery, and the APIs which expose these
functions to the Client/Server layer, are of primary interest for this document.

3.1.1 Service Registry

The Salutation Manager contains a Registry to hold information about Services?.
The minimum requirement for the Registry is to store information about Services
connected to the Salutation Manager. Optionally, the Salutation Manager
Registry may store information about Services that are registered in other
Salutation Managers. All requests by other equipment for Salutation resources
would be directed toward other Salutation Managers which would respond
accordingly.

The limit on Registry implementation is the size of the storage reserved for the
Registry function.

3.1.2 Service Discovery

The Salutation Manager can discover other remote Salutation Managers and
determine the Services registered there. Service Discovery is performed by
comparing a required Services type(s), as specified by the local Salutation
Manager, with the Service type(s) available on a remote Salutation Manager.
Through manipulation of the specification of required Service type(s), the
Salutation Manager can determine:

The characteristics of all the Services registered at a remote Salutation
Manager

2 Equivalent to Bluetooth service record DB shown in Figure 2.1

Salutation Architecture Summary 01 July 1999 11

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 12 of 26

The characteristics of a specific Service registered at a remote Salutation
Manager

The presence of a Service on a remote Salutation Manager matching a
specific set of characteristics.

3.2 Salutation Manager API Specification

This section describes an abstract definition of the SLM-API, the application
programming interface provided by the Salutation Manager to Salutation
applications. More specifically, this section focuses on the Salutation Service
Registration and Service Discovery APIs. It is intended to provide a level of
understanding to aid in the mapping of Salutation APIs to Bluetooth SDP
functions. The SLM-API supporting the mapping are:

Service Registration
simRegisterCapability()
slmUnregisterCapability()

Service Discovery
slmSearchCapability()
simQueryCapability()
3.2.1 Salutation Manager API Description
The SLM-APIs are described in the abstract in this section.

When the Client calls the Salutation Manager through the SLM-API, it is called
the local Salutation Manager. Any other Salutation Manager is called a remote
Salutation Manager. Refer to Reference [3] for details of the API attributes of
SLM-ID, Functional Unit Description Record, and Service Description Record.

Abstract SLM-API function accomplished

simRegisterCapability() The sImRegisterCapability() function is called by
Services to register their specific instances of Functional

Input Parameters Units with the local Salutation Manager. The specific

(instance is described in a record called a Functional
Functional Unit Description Unit Description Record. The calling Service passes a
Record®; Functional Unit Description Record, which describes its

capability, to the Salutation Manager. The Salutation
Manager returns a Functional Unit Handle that uniquely
identifies the Functional Unit among all the Functional
Callback Entry for Close Service | Units registered with the Salutation Manager.

Callback Entry for Open Service
Indication;

® The Salutation Architecture defines the Functional Unit Description Record as a record that
identifies the Functional Unit, and the capabilities of that instance of the Functional Unit. The
Functional Unit maps to the Bluetooth Service and capabilities map to the Bluetooth Attributes.

Salutation Architecture Summary 01 July 1999 12

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 13 of 26

Indication;

Callback Entry for Receive Data
Indication;

Preferred Functional Unit
Handle

)

Output Parameter

(

Functional Unit Handle

While a Service has a Functional Unit registered with a
local Salutation Manager, the Functional Unit’s
capability may be included in the response to a Query
Capability request.

The Callback Entries are provided to provide an entry
point into a Service when that service is to be used.
Entry points are provided for opening and closing the
Service as well as for receiving data.

The Service may attempt to specify a handle for the
functional unit instance being registered. This value will
be assigned if it is not currently in use. Otherwise, the
Salutation manager will assign a random, unused value
for the handle.

slmUnregisterCapability()

Input Parameters

(
)

Output Parameter

Functional Unit Handle

None

The Service, which has registered itself with the local
Salutation Manager by calling the
slmRegisterCapability() function, calls this function to
unregister itself from the local Salutation Manager.

The Functional Unit Handle is the value returned by the
slmRegisterCapability() used to register this Service.

slmSearchCapability()

Input Parameters

SLM-ID;
Service Description Record”;
Output Parameter

(
List of SLM-IDs

The Client calls this function to ask the local Salutation
Manager to search for Salutation Managers having a
registered Functional Unit with a specific capability. The
local Salutation Manager returns the list of SLM-IDs to
the Client. Salutation Manager(s) whose SLM-ID(s) are
included in the list has(have) a Functional Unit(s) that
can provide the Service requested by the Client.

SLM-ID is NULL for version 2.0 of the Salutation
Architecture

Service Description Record describes the Service(s)
and their capabilities that are of interest to the Client. A
Service Description Record that contains a Functional
Unit Description Record of "All Call" Functional Unit ID
with no Attribute Records, may be specified to get the
list of all the SLM-IDs of Salutation Managers known to
the local Salutation Manager.

slmQueryCapability()
Input Parameters

(
SLM-ID;

Service Description Record

The Client calls this function to discover registered
Functional Units and their capabilities at a specific
Salutation Manager.

SLM-ID specifies the target Salutation Manager. If
NULL is specified, the target Salutation Manager is the
local Salutation Manager.

The Input Service Description Record describes the
Service(s) and their capabilities that are of interest to

* The Salutation Architecture defines the Service Description Record as a collection of one or
more Functional Unit Description Records. The Service Description Record describes all the
services sought by a Client or all the services maintained by a Service.

Salutation Architecture Summary

01 July 1999 13

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 14 of 26

Output Parameter

Service Description Record

the Client.

The Output Service Description Record describes the
Service(s) and their capabilities that match the Input
Service Description Record.

3.3 Service Discovery Flow

The flow of Remote Service Discovery messages and calls are depicted in Table
3-4. Salutation APIs are used by the Client and Functional Unit to access their
respective Salutation Managers. Salutation Protocol flows between the Client-
side and Server-side Salutation Managers.

Client Client-side
Salutation Manager

Salutation
Protocol

Service-side Functional Unit
Salutation Manager

<== slmRegisterCapability() call
simRegisterCapability() return ==>

slmSearchCapability() call ==>

Query Capability call ==>
<== Query Capability reply

(This step is repeated for each known SLM. The reply data maybe
cached for the next step.)

<== slImSearchCapability() return

simQueryCapability() call ==>

Query Capability call ==>
<== Query Capability reply

(This step is optional, depending on the caching capability of the
Client’s Salutation Manager.)

<== slImQueryCapability() return

(This step is repeated for each
Salutation Manager found by the
Search Capability.

The Salutation Manager returns the
cached data.)

<== sImUnRegisterCapability() call
slmUnRegisterCapability() return ==>

Table 3-4: Remote Service Discovery Flow Diagram

Salutation Architecture Summary

01 July 1999

14

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 15 of 26

4 Mapping Bluetooth SDP to Salutation APIs

Two approaches will be used for mapping Bluetooth SDP primitives to Salutation
APlIs.

The first approach will assume that the Salutation APIs are implemented on top
of the Bluetooth service discovery. In this case, the mapping will show how SDP
attributes can be passed in the Salutation APIs. That is:

Salutation APIs = Bluetooth SDP - Bluetooth Protocol

Here, the Salutation APIs are implemented as the entry to Bluetooth SDP. SDP
extracts the information it requires from the APIs and processes according to the
mapping to SDP primitives.

The second approach will assume that Salutation Manager can be map directly to
the SDP protocol using a Bluetooth specific Transport Manager (indicated by TM
in Figure 3.1). That is:

Salutation APIs - Salutation Manager - Bluetooth Protocol

Here, SDP is replaced by the Salutation Manager, with the Salutation Manager
mapping its functionality to SDP protocol.

4.1 General Mapping Assumptions

SDP is a service manager. For RemDev, it provides the ability to
specify local services and respond to requests to discover the services
it manages. For LocDeyv, it provides the ability for SvcDscApp to ask
RembDev if it supports specific services. The APIs provide a means for
application developers to access the functions of the SDP service
manager.

Service requests by LocDev are accessed through Salutation
slmSearchCapability() and sim QueryCapability() API calls.

Certain Bluetooth RemDevs will have the need to dynamically update
the services they support. That is, a RemDev may need to update the
service records maintained in the service record DB. Salutation
simRegisterCapability() and simUnregisterCapability() API calls will

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 15

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 16 of 26

be mapped on the RemDev side to support dynamic registry of
services.

4.2Salutation API Mapping

This section describes how Salutation APIs can be used to represent the SDP
primitives.

4.2.1Configuration
The configuration used for this mapping is shown in Figure 4.1. The figure shows

the use of the Salutation APIs as the entry point to SDP. No other changes have
been made to the Bluetooth model shown in Figure 2.1.

SrvDscApp RemSrvApp

BT_mOdUl@_ntrI Sal Uta“ On A PI S service
records DB
SDP ShbP
_co

co
L2CAPlayer | g——pp L2CAPlayer

. AcL [A]
Baseband <> Baseband
LocDev RemDev

Figure 4.1: Salutation APl Mapping to Bluetooth SDP

4.2.2Mapping

Table 4.1 depicts the general mapping of SDP primitives to Salutation APIs.
Although there are no parallels defined in the SDP primitives, the Salutation
Register Capability and Unregister Capability APIs are included for
completeness.

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 16

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer

Page 17 of 26

The function provided by the SDP getRemDevName - the return of the names of
devices identified by the SDP service searches - is an integral part of the

Salutation's simSearchCapability() and simQueryCapability() calls. As a result,
one Salutation API can provide the function of two SDP primitives.

This mapping uses the functional definition of the Salutation APIs, but not the
parameter values. The APIs becomes a vehicle for passing the SDP parameters

to the Bluetooth SDP Manager. That is, the SLM-ID and Service Description
Records parameters of the Salutation APIs are replaced with the appropriate
SDP parameter values. Therefore, the parameters defined by the SDP primitives
are passed without modification to the Bluetooth SDP Manager via the Salutation

API format. The parameter returned from the search operations is a list of the

names of the devices identified by the search.

SDP Service Primitive

Salutation Primitive

ServiceBrowse, getRemDevName

SImQueryCapability()

Input Parameters

(
LIST(RemDev);

LIST(RemDevRelation);
LIST(browseGroup);

stopRule
)

Output Parameter

(

List of Device Names

)

ServiceSearch, getRemDevName

SImQueryCapability()

Input Parameters

(
LIST(RemDev);

LIST(RemDevRelation);

LIST(searchPath,
attributeList);
stopRule

)

Output Parameter

(

List of Device Names

)

EnumerateRemDev, getRemDevName

SImSearchCapability()
Input Parameters

LIST(classOfDevice);
stopRule

Mapping Bluetooth SDP to Salutation APIs 01 July 1999

17

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 18 of 26

)

Output Parameter

(

List of Device Names

)

SImRegisterCapability()
(No SDP Registration Primitives)
Input Parameters

(
LIST (attributeList);

Callback Entry for Open
Service Indication;

Callback Entry for Close
Service Indication;

Callback Entry for Receive
Data Indication;

Preferred Functional Unit
Handle

)

Output Parameter

(
Functional Unit Handle

)

slmUnregisterCapability()
(No SDP Registration Primitives)

Input Parameters

(
)

Output Parameter
None

Functional Unit Handle

Table 4.1 SDP primitive to Salutation APl mapping

The sImSearchCapability() call is used for both the serviceBrowse and the
serviceSearch SDP primitives. The differentiater is the presence or absence of
the browseGroup list parameter. If this parameter is present, the Bluetooth SDP
Manager performs a browse operation. Otherwise a search operation is
performed.

The Functional Unit Description Record parameter of the Salutation
slmRegisterCapabilities API is replaced with the SDP attributeList parameter that
specifies the capabilities of the service being registered. The callback parameters
remain in the API definition, providing a means to define the entry points for
service utilization. The returned value remains a handle of the registered service.

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 18

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 19 of 26

This value is used in the simUnregiserCapability API to identify the service to be
removed from public access.

4.2.3Summary

The Salutation APl mapping provides a means to pass SDP primitive attributes to
the Bluetooth SDP Manager.

4.3Salutation Manager Mapping

This section describes how the Salutation Manager, accessed via the Salutation
APIs, can be used to generate Bluetooth SDP protocol.

SrvDscApp RemSrvApp
Elﬁ - " Salutation APIs i
(s N
™ _TM
~
CO Co
L2CAPlayer | g——pp L2CAPlayer

A A

. AcL [A]
Baseband <> Baseband
LocDev RemDev

Figure 4.2: Salutation Manager Mapping to Bluetooth SDP protocol
4.3.1Configuration

The configuration used for this mapping is shown in Figure 4.2. The figure shows
the use of the Salutation Manager (SLM) in both LocDev and RemDeyv to provide
the service the management functionality of SDP. SLM exposes the existing
Salutation APIs to the SrvDscApp and the RemSrvApp. SLM generates the
appropriate SDP protocol through its TM, handing it off to L2CA layer. SLM also
responds to SDP protocol received from L2CA. No other changes have been
made to the Bluetooth model shown in Figure 2-1.

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 19

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 20 of 26

4.3.2Mapping

Table 4.2 depicts the general mapping of Salutation Manager functions to the
SDP protocol. LocDev and RemDev use the Salutation APIs to access their
respective Salutation Managers. Bluetooth Service Discovery Protocol flows
between the LocDev and RemDev Salutation Managers.

Two transformations exist between the Salutation API layer and the Bluetooth
SDP protocol layer. The Salutation Manager provides these transformations.

slmSearchCapability() <> SDP_ServiceSearch
slmQueryCapability() <-> SDP_ServiceSearch & SDP_ServiceAttribute

4.3.2.1Capability Search

The Salutation simSearchCapability() API call is mapped by the Salutation
Manager's TM to a Bluetooth ServiceSearch protocol. The Salutation Manager
maps the Functional Unit Description Record passed in the APl to a
ServiceSearchPattern attribute. The Salutation Manager then makes an L2CAP
connection with a Bluetooth RemDev and sends the Service SearchPattern to the
RemDev in a SDP_SereviceSearchRequest. Note that the ServiceSearchPattern
may contain BrowseGroupList attributes as deemed necessary by the transform
process.

If the RemDev Salutation Manager can match existing registered services with
the ServiceSearchPattern, a SDP_ServiceSearchResponse is sent back to the
LocDev Salutation Manager containing a list of service record handles for service
records that match the ServiceSearchPattern in the request.

This process is repeated by establishing an L2ZCAP connection with another
RembDev in radio range of LocDev. When all RemDevs have been contacted in
this fashion, the LocDev Salutation Manager builds a list of device IDs returning
positive responses and returns them to the calling application as a list of SLM-
IDs. The Salutation Manager maintains a list of SLM-IDs and corresponding
RemDev addresses for future SDP activity.

Specific transformations from Functional Unit Description Records to a
ServiceSearchPattern will depend on the definition of ServiceSearchPattern for
Bluetooth. For example:

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 20

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 21 of 26

LocDev Client-side Bluetooth Service Service-side RemDev
Salutation Manager Discovery Salutation Manager
Protocol

<== slmRegisterCapability() call
simRegisterCapability() return ==>

SimSearchCapability() call ==>

SDP_ServiceSearchRequest ==>
<== SDP_ServiceSearchResponse

(This step is repeated for each known Bluetooth device. The reply data
maybe cached for the next step.)

<== slmSearchCapability() return

SImQueryCapability() call ==>

SDP_ServiceSearchRequest ==>
<== SDP_ServiceSearchResponse

SDP_ServiceSearchAttributeRequest ==>

<== SDP_ServiceSearchAttributeResponse

(This step is repeated for each service record handle identified in the
previous SDP_ServiceSearchRequest.)

<== slImQueryCapability() return

<== sImUnRegisterCapability() call
slmUnRegisterCapability() return ==>

Table 4-2: Remote Service Discovery Flow Diagram

if the following Service Classes are defined:

DuplexColorPostscriptPrinterServiceClass,
ColorPostscriptPrinterServiceClass,
PostscriptPrinterServiceClass,
PrinterServiceClass,

and the simSerchCapability() call includes a [Print] Functional Unit
Description Record with attributes of Postscript ,Duplex, and Colate,

then the resulting ServiceSearchPattern would contain attributes for
PrinterServiceClass and PostscriptPrinterServiceClass.

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 21

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 22 of 26

The TM of the Salutation Manager on RevDev makes a reverse transformation
from ServiceSearchPattern and compares to the registered Functional Unit
attributes.

4.3.2.2 Capability Query

The Salutation simQueryCapability() API call is mapped by the Salutation
Manager to a Bluetooth ServiceSearch and ServiceAttribute protocols in a two
step process.

1. The LocDev Salutation Manager's TM maps the Service Description Record
passed in the API to a ServiceSearchPattern attribute. The Salutation
Manager then makes an L2CAP connection with the Bluetooth RemDev
represented by the SLM-ID passed in the API call, and sends the
ServiceSearchPattern to the RemDev in a SDP_SereviceSearchRequest.
Note that the ServiceSearchPattern may contain BrowseGroupList attributes
as deemed necessary by the transform process.

If the RemDev Salutation Manager can match existing registered services
with the ServiceSearchPattern, a SDP_ServiceSearchResponse is sent back
to the LocDev Salutation Manager containing a list of service record handles
for service records that match the ServiceSeachrPattern in the request.

2. To determining attribute specifics, the LocDev Salutation Manager selects one
of the service record handles returned in Step 1. The Salutation Manager's
TM maps the Service Description Record passed in the API to an
AttributelDList attribute. The Salutation Manager then sends the service
record handle and the AttributelDList to the RemDev in a
SDP_ServiceAttributeRequest.

The RemDev returns a SDP_ServiceAttributeResponse containing an
AttributeList identifying a list of attributes and their values for the requested
service record.

Step 2 is repeated for each service record handle returned in Step 1.

When this cycle is completed, the LocDev Salutation Manager assembles a
Service Description Record from the values returned by in the
SDP_ServiceAttributeResponses. This Service Description Record is return to
the calling application.

As before, specific transformations from the Functional Unit Description Records
(contained in the Service Description Record) to a ServiceSearchPattern will
depend on the definition of ServiceSearchPattern for Bluetooth. The same
applies to transformations from Functional Unit Description Records to
AttributIDList. For example:

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 22

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 23 of 26

if the following Service Classes are defined:

DuplexColorPostscriptPrinterServiceClass,
ColorPostscriptPrinterServiceClass,
PostscriptPrinterServiceClass,
PrinterServiceClass,

and the simQueryCapability() call includes a [Print] Functional Unit
Description Record with attributes of Postscript, Duplex, and Collate

then the resulting ServiceSearchPattern would contain attributes for
PrinterServiceClass and PostscriptPrinterServiceClass, and the
AttributelDList would contain attribute IDs for Postscript, Duplex and Collate.

4.3.3 Stop Rules

Instances of the Salutation Manager, such as IBM's Salutation Manager Toolkit,
provide a control interface outside of the Salutation APIs. This mapping assumes
that such a control interface exists for the Salutation Manager supporting
Bluetooth. The Bluetooth stop rules will be set via this interface.

4.3.4 Summary

The Salutation Manager mapping provides a means to use the Salutation
Manager as a service broker in the Bluetooth environment. Because Salutation
Manager is independent of underlying protocols and operating environments, a
Salutation implementation can be a single application interface to numerous
protocols. For example, in additions to the Bluetooth mapping, Salutation has
been specified for TCP/IP and IR. A mapping to SLP is also being described.

As an example, Figure 4.3 shows a single service discovery application using the
Salutation APIs to access the Salutation Manager to locate service in both the
Bluetooth and TCP/IP environments. The advantage of this technique is to
present a single methodology and API set to application for service discovery.
The application need not know where a service resides, and therefore what
service discovery primitives to uses, prior to performing a service search.

Mapping Bluetooth SDP to Salutation APIs 01 July 1999 23

Mapping Salutation Architecture APIs to

Bluetooth Service Discovery Layer

Page 24 of 26

SrvDcsApp

Salutation Manager

™™

™

TCPI/IP

Figure 4.3: Salutation Manager in mixed transport environment

Bluetooth

SLM-API

Mapping Bluetooth SDP to Salutation APIs 01 July 1999

24

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer Page 25 of 26

5 References

[1]Service Discovery Protocol, Release 1.0 July 1999
[2]Service Discovery Profile, Release 1.0 July 1999

[3]Salutation Architecture Specification (Part 1) Version 2.0c
(www.salutation.org)

References 01 July 1999 25

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer

Page 26 of 26

6 Definitions

Term

Definition

Functional Unit
Description
Record

The Salutation Architecture defines the Functional Unit Description
Record as a record that identifies the Functional Unit, and the
capabilities of that instance of the Functional Unit. The Functional
Unit maps to the Bluetooth Service and capabilities map to the
Bluetooth Attributes.

Callback Entry for
Open Service
Indication

The specified entry of the calling Client is called back by the
Salutation Manager when an Open Service request for the Functional
Unit is received.

Callback Entry for
Close Service
Indication

The specified entry of the calling Client is called back by the
Salutation Manager when a Close Service request for the Functional
Unit is received.

Callback Entry for
Receive Data
Indication

The specified entry of the calling Client is called back by the
Salutation Manager when a Transfer Data request for the Functional
Unit is received.

Preferred
Functional Unit
Handle

If the calling Client wants to be assigned any specific value as its
Functional Unit Handle, the preferred value is specified in this
parameter. Otherwise, zero (0) should be specified.

Functional Unit
Handle

The Salutation Manager generates a unique Functional Unit Handle
value and returns it to the calling Client. If the function fails, zero (0)
is returned.

SLM-ID This parameter shall be NULL, indicating the local Salutation
Manager, under version 2.0 of the Salutation Architecture.
Service The Salutation Architecture defines a Service Description Record as
Description a collection of one or more Functional Unit Description Records. The
Record Service Description Record describes all the services sought by a
Client or all the services maintained by a Service.
Definitions 01 July 1999 26

	Front Page
	Contents
	Overview
	Bluetooth Summary
	Bluetooth Service Discovery Protocol
	Bluetooth Profile Stack
	Bluetooth Service Primitives

	Salutation Architecture Summary
	Service Broker Tasks
	Salutation Manager API Specification
	Service Discovery Flow

	Mapping Bluetooth SDP to Salutation APIs
	General Mapping Assumptions
	Salutation API Mapping
	SDP Service Primitive Salutation Primitive
	Salutation Manager Mapping

	References
	Definitions

